Recurrent Neural Net Learning and Vanishing Gradient
نویسنده
چکیده
Recurrent nets are in principle capable to store past inputs to produce the currently desired output. This recurrent net property is used in time series prediction and process control. Practical applications involve temporal dependencies spanning many time steps between relevant inputs and desired outputs. In this case, however, gradient descent learning methods take to much time. The learning time problem appears because the error vanishes as it gets propagated back. The decaying error ow is theoretically analyzed. Then methods trying to overcome vanishing gradient are mentioned. Finally, experiments comparing conventional algorithms and alternative methods are presented. Experiments using advanced methods show that learning long time lags problems can be done in reasonable time.
منابع مشابه
Learning Longer Memory in Recurrent Neural Networks
Recurrent neural network is a powerful model that learns temporal patterns in sequential data. For a long time, it was believed that recurrent networks are difficult to train using simple optimizers, such as stochastic gradient descent, due to the so-called vanishing gradient problem. In this paper, we show that learning longer term patterns in real data, such as in natural language, is perfect...
متن کاملOvercoming the vanishing gradient problem in plain recurrent networks
Plain recurrent networks greatly suffer from the vanishing gradient problem while Gated Neural Networks (GNNs) such as Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) deliver promising results in many sequence learning tasks through sophisticated network designs. This paper shows how we can address this problem in a plain recurrent network by analyzing the gating mechanisms in GNNs...
متن کاملLearning Multiple Timescales in Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are powerful architectures for sequence learning. Recent advances on the vanishing gradient problem have led to improved results and an increased research interest. Among recent proposals are architectural innovations that allow the emergence of multiple timescales during training. This paper explores a number of architectures for sequence generation and predict...
متن کاملThe Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions
Received () Revised () Recurrent nets are in principle capable to store past inputs to produce the currently desired output. Because of this property recurrent nets are used in time series prediction and process control. Practical applications involve temporal dependencies spanning many time steps, e.g. between relevant inputs and desired outputs. In this case, however, gradient based learning ...
متن کاملRecurrent Neural Networks
Recurrent neural network is a powerful model that learns temporal patterns in sequential data. For a long time, it was believed that recurrent networks are difficult to train using simple optimizers, such as stochastic gradient descent, due to the so-called vanishing gradient problem. In this paper, we show that learning longer term patterns in real data, such as in natural language, is perfect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998